skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Jian‐jun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Based on the vertical Total Electron Content (TEC) data observed by the Global Navigation Satellite System in the northern hemisphere, a large area of low plasma density during summer at high latitudes, termed decreased TEC region, was investigated statistically between 2014 and 2024. Compared with the classical depleted structures that usually occur in the nighttime F region at high latitudes during winter, decreased TEC region is usually found in the sunlit polar cap ionosphere during summer. The decreased TEC region is predominantly located in regions above 70° magnetic latitude for moderate and high solar activity. The lower‐TEC region is biased towards the dawn and midnight sectors. Along the 18:25–06:25 Magnetic Local Time meridian, the depth of the decreased TEC region reached 7.6TECu in 2014. The decreased TEC region is deeper for higher Kp (Kp > 2) than for low Kp (Kp ≤ 2). 
    more » « less
    Free, publicly-accessible full text available April 28, 2026
  2. Abstract The morphology and motion of auroras have been widely studied due to their indications on magnetospheric processes. Here, we report a new kind of “auroral curls,” which have wavelengths in the mesoscale (∼100 km) and propagate azimuthally. Utilizing data from the Chinese Antarctic Zhongshan Station (the all‐sky imager and the high‐frequency radar), the Active Magnetosphere and Planetary Electrodynamics Response Experiment and the Defense Meteorological Satellite Program, we analyze an event occurred on 23 April 2019. We find these curls are fine structures in the poleward boundary of multiple arcs. Corresponding field‐aligned currents manifest as a series of longitudinally arranged pairs, while ionospheric flow velocities nearby oscillate with periods in the Pc 5 band. Observational evidence suggests these curls are connected with ultra‐low frequency (ULF) waves, which opens the possibility of using auroras to globally image ULF waves. 
    more » « less
  3. Abstract Throat auroras frequently observed near local noon have been confirmed to correspond to magnetopause indentations, but the generation mechanisms for these indentations and the detailed properties of throat aurora are both not fully understood. Using all‐sky camera and magnetometer observations, we reported some new observational features of throat aurora as follows. (1) Throat auroras can occur under stable solar wind conditions and cause clear geomagnetic responses. (2) These geomagnetic responses can be simultaneously observed at conjugate geomagnetic meridian chains in the Northern and Southern Hemispheres. (3) The initial geomagnetic responses of throat aurora show concurrent onsets that were observed at all stations along the meridians. (4) Immediately after the concurrent onsets, poleward moving signatures and micropositive bays were observed in theXcomponents at higher‐ and lower‐latitude stations, respectively. We argue that these observations provide evidence for throat aurora being generated by low‐latitude magnetopause reconnection. We suggest that the concurrent onsets reflect the instantaneous responses of the reconnection signal arriving at the ionosphere, the followed poleward moving signatures reflect the antisunward dragging of the footprint of newly opened field lines, and the micropositive bays may result from a pair of field‐aligned currents generated during the reconnection. This study may shed new light on the geomagnetic transients observed at cusp latitude near magnetic local noon. 
    more » « less